QUICK START GUIDE

Model 950A FluoroTrack

Program Version: 3.100

May 30, 2013

Aurora Scientific Inc.

360 Industrial Parkway South, Unit 4Aurora, Ontario, Canada L4G 3V7Toll Free:1-877-878-4784Telephone:1-905-727-5161Facsimile:1-905-713-6882Email:info@AuroraScientific.comWeb site:www.AuroraScientific.com

1.0 Quick Start Guide

This quick start guide will help you get your system up and running in as little time as possible. The guide includes both setup and explanation of basic software features.

1.1 Instrument Setup

Follow the hardware setup instructions provided by IonOptix and setup the fluorescence equipment. Likewise follow the setup instructions for other equipment used in the experiment such as the length controller, force transducer, stimulator, 600A Digital Controller and VSL/HVSL sarcomere measurement system.

1.1.1 Attaching the VSL/HVSL Camera to the Cell Framing Adapter

Attach the VSL/HVSL camera to the end of the IonOptix Cell Framing Adapter (CFA) using the following procedure.

- 1) Loosen the thumbscrew holding the C-mount adapter to the CFA and then remove the C-mount adapter (see Figure 1).
- 2) Screw the C-mount adapter onto the camera (see Figure 2).
- 3) Slide the camera through the camera fork (the camera fork is specific to the camera model you have) that is attached to the end of the Cell Framing Adapter and once the C-mount adapter is fully inserted then tighten the thumbscrew (see Figure 3). Tighten the thumbscrew until you feel resistance and then loosen it one full turn. This allows the camera to be rotated along with the Cell Framing Adapter.

Figure 1 Camera, C-mount and Cell Framing Adapter (note thumbscrew on top)

Figure 2 C-Mount attached to camera

Figure 3 Camera attached to Cell Framing Adapter

1.1.2 Signal Connections

Using the supplied BNC-BNC cables make all of the signal connections between the FluoroDAQ controller and the 604A Signal Interface as follows:

Connection	Function	604A Signal Interface (front panel)	FluoroDAQ (back panel)
1	Numerator	Aux1	Path 1 Out
2	Denominator	Aux2	Path Out 2
3	FluoroDAQ Trigger	TrgOut1	Trig In
4	Operating Mode	TrgIn1	Mode 1 Out
5	Operating Mode	TrgIn2	Mode 2 Out

 Table 1 FluoroDAQ/604A Signal Interface Connections

1.1.3 Stimulator Connections

Output

Using the supplied BNC-BNC cables connect the stimulator to the apparatus and to the 604A Signal Interface as follows:

		0		
Connection	Function	604A Signal Interface (front panel)	701C Stimulator (front panel)	Apparatus
1	Stimulator Trigger	Stimulator	External Trigger	No Connection
2	Stimulator	No Connection	Pulses Out	Connect to

Table 2 Stimulator/604A Signal Interface Connections

1.1.4 PC Startup

The 950A FluoroTrack software comes pre-installed on the 600A PC. Attach the keyboard, mouse and monitor (we suggest you attach the monitor using the DVI connector for improved performance) to the PC. The Linux operating system will determine the native resolution of the monitor and automatically set the video resolution to that value. It is therefore important that you turn on the monitor before turning on the PC. If desired you can run two

electrode connector

monitors with the 600A PC, please contact Aurora Scientific Inc. for more information about this option.

1.2 Software Registration and Activation

The FluoroTrack program must be licensed before it will run on your new PC. The following procedure should take about 5 minutes to complete.

You will need:

- PC with ASI software to be activated
- PC with an internet connection (does not have to be the 600A PC)
- Product Key found on the serial number tag for the software.
- 1. Click on the Activate Software icon located on the desktop.
- 2. When the Activate window opens follow the on-screen directions as shown in Figure 4 (remember Linux is case sensitive). The first step will be to enter the Product Key which is a 5 character key with the format of three numbers followed by a letter and then a final number, e.g., 017J3. Ensure you enter the Product Key and not the serial number.
- 3. After pressing the Enter key the ASI Activate program will provide you with an Activation Code which is an alpha-numeric character string consisting of three groups of 5 characters each separated by dashes, e.g., 7P001-740x0-130x3.

间 🕑 a:	: ASIActiv	ate.sh			
File E	lit View	Bookmarks	Settings	Help	
-x `4kT4 9b* y9)u?*ocI Welcome Please 403xxx Your Ac	, gpbl Spbbd (wXbbqe pbbbbbbXq bbbphuuu 44Sc :7jIl2nY to the A to the A nter you ivation (' dybbbbd dXbbbbd Lqbbbdl,\ qqqdbdki777jd uuuu5Ddbl (4440v) `,:cCaUGP9UL OTTSOOJi! SI Activation r product key Code: 7P001-7	.uuuc` Fqqqx) pdqF9 `"77?' ,i2TgwGa l* Procedur . It can 740x0-130x	(LZke I9yDDyf7 ':coJeC53I(`JUZZT3` Vb ``((sK 4pbbbbqn Jpdj .Spbbbbbqn ;hRT) ?hXbbbbqn -JwFO(8pbbbbbpwz! 4pbbbbq2 ,SywS4444 l(e. be found on your Serial Number tag. 3	
i o di i no	L FOI CLOID		10/10 100/		
Please http://	ake this ww.Aurora	code to an i aScientific.c	nternet e om/activa	nabled machine, and navigate to te/ and fill out the form.	
Please	nter the	License Code	that was	returned from the ASI website.	▲ ▼
	asi	ASIActivate.s	h		

Figure 4 ASI Activate Window

- 4. On the PC with internet access, point your web browser to: http://www.AuroraScientific.com/activate
- 5. Enter the Activation Code returned by the ASIActivate program, your contact details and then click on the Activate! button. See Figure 5.
- 6. Copy or write down the license code returned by the webpage.
- 7. Enter the license code, and then enter the root user's password (By default this password is set to "root". If you have changed it, then enter your new password.)
- 8. Repeat as required for additional ASI software. For example, if you have a PC with both 600A and 901B software, you must complete this procedure twice.
- 9. Click on the desktop icon to start 600A and then click on the 950A menu item to start the FluoroTrack program. If the program starts then the license was installed correctly.

Should you encounter any issues with this procedure, please contact ASI by phone or email, and we will be happy to help you with the process.

Figure 5 ASI Product Activation Website

1.3 Linux and Desktop Overview

Once all components of the system have been connected together then turn on the monitor and the PC. The PC should go through the normal power on self-tests and then the Linux operating system should be loaded. Once loaded, a Windows-like desktop should appear with a task bar at the bottom of the screen and several icons located on the desktop. The desktop is shown in Figure 6. The most frequently used icons will be 600A, *VSL*, *Home*, and *data*. The taskbar at the bottom of the screen shows the current windows that are open and provides a simple method of switching between the windows. Simply click on the taskbar item that you want to switch to and that window will become the current and top one. The most frequently used icon at the bottom of the screen is the *K* icon at the far left of the screen. The *K* icon is similar to the Start button in Windows. It provides access to programs and also allows you to shut down the computer properly. Just like Windows, Linux must be shut down properly since the file system is updated during the shutdown procedure.

For specific actions like licensing software you may need to obtain superuser privileges. This is done by clicking on the *xterm* icon and then typing the following in the xterm:

su Password: root

> If you change the root password (superuser password) there is no way for ASI to recover the password if you forget or lose it. Therefore please record the superuser password and store it in a safe place.

Many users will elect to connect the 600A/950A/HVSL PC to a network. Since the PC was shipped with no login password and the root password is not secure be sure to set strong passwords before connecting the PC to a network. A strong password should not be a recognizable word, it should be a minimum of 6 characters containing letters, numbers and at least one special character (&, ^, \$, #, @, !).

1.4 Starting the FluoroTrack Program

In most applications the researcher will be using three software programs during the experiment, these are: 600A Digital Controller, 900B/901B VSL/HVSL and 950A FluoroTrack. Once the PC finishes the login process you will see an icon on the Desktop for **600A** and for **VSL** or **HVSL** (depending on which system you own), see Figure 6. You will not see an icon for 950A FluoroTrack because it is a module installed within the 600A program. Make sure you license 600A, VSL/HVSL and FluoroTrack before continuing (see section 1.2 Software Registration and Activation for details).

Start the 600A program by clicking on the 600A icon. Setup 600A according to the instructions found in the 600A manual. Before starting VSL/HVSL make sure that the camera is powered. The program sends setup information to the camera when the program starts so improper camera operation may occur if the camera is not powered when the program starts. Click on the VSL or HVSL icon to start the program. Setup the VSL/HVSL program according to the instructions found in the VSL/HVSL manual.

FluoroTrack is a module installed within 600A so you will notice on the top menu bar of the 600A program a 950A menu item, click on this menu to start the 950A FluoroTrack program.

Figure 6 Desktop with 600A, FluoroTrack and VSL Programs Running

1.5 FluoroTrack Program Main Window

When the FluoroTrack program starts the main window will open showing the FluoroTrack scope screen and the controls for the IonOptix FluoroDAQ fluorescence controller (see Figure 7). The main window is separated into four main sections: the top menu bar, the left side control pane, the lower control buttons above a status information line and finally the Scope graph area. The main window can be repositioned, minimized and resized as per normal Windows type controls. When the program is closed it remembers the size and location of the main window and will start next time at the same size and in the same location. Because three programs must be displayed simultaneously you may want to use a dual monitor setup. The 600A PC is capable of driving two monitors; please contact ASI for instructions on setting up Linux for display on two monitors. The Linux desktop and all program windows use normal Windows-type controls for manipulating the display windows.

The menu bar located along the top of the screen includes the following headings (shown in bold) with the drop down menu items listed below.

File	Edit	Setup	Tags	Analysis	Stimulus	600A	Help
New Session Quit	Display Settings Show Controls	Open Close	View Edit (F1-F9)	Open Close	Open Close	Protocol Setup Main	Quick Start ASI950A Help FluoroDAQ Help About

Clicking on any menu item opens a drop-down menu that lists the commands available under the selected heading. A detailed description of each command is provided in Chapter **Error! Reference source not found.**

Figure 7 FluoroTrack Main Screen

The left side control pane includes controls for the FluoroDAQ fluorescence controller. These include Status and Mode readouts, control buttons to turn the UV light source on or off and to set the operating mode. In the middle on the left is a section for recording and showing the current background settings for the Numerator and Denominator signals. The Record Background button records the current background levels of the Numerator and Denominator inputs. These are automatically stored by the program and the applied to all data displayed after the Record Background button is pressed. If the researcher knows the background signals (measured in volts) then they can also type these known values in the Num and Den text boxes. At the bottom of the left control pane are display controls that allow the time base for the Scope section to be set and a Pause/Run button. Pressing the Pause button allows a researcher to stop the live scope output and then scroll back through the data for up to 4 hours.

The lower control buttons and the status information line provide the main experiment control buttons from the 600A program (you can start a test from 600A or from 950A; the button does the same job regardless of where it is pressed). The control buttons include Start Sequence, Start Test, Next Test and Stop Test. The 600A control buttons are all explained in the 600A

Instruction Manual. At the bottom of the screen is a status line which provides information about what the program is doing at any given time.

The Scope display provides a real-time scrolling display of the data channels along with a Tags bar at the top of the screen and a 600A graphical status indicator at the bottom of the screen. Clicking on Edit>Display Settings will open the Display Settings window. This window is shown in Figure 8 and allows the channels to be selected, the colour of the each channel to be set, the relative size of each channel, the background colour scheme as well as a control button which will set the channel colours the same as they are currently defined in the 600A program.

Figure 8 FluoroTrack Display Settings Screen

The Tags bar at the top of the main screen area provides a graphical indication of where the researcher has tagged the data (see Figure 9).

Figure 9 FluoroTrack Main Screen with Tags

There are two methods of inserting a tag into the data, either left click the mouse with the pointer on the Tags bar which creates a tag at that point in time and opens the Tag Editor, as can be seen in Figure 10, or press one of the functions keys from F1 to F9. Pressing a function key creates a tag and automatically populates the text box with Tag information that the researcher has previously assigned to that particular F key. Text can be assigned to function keys by opening the FluoroTrack Tags screen by clicking on Tags>Edit Tags (F1-F9) as is shown in Figure 11.

Figure 10 FluoroTrack Main Screen with Tag Editor Open

🕅 💿 Flu	uoroTrack Tags 📃 🗖 🗙		
Fn Key	Tag		
Fl	F1 - Start of the Experiment		
F2	ND = 1		
F3	ND =2		
F4	ND =3		
F5	ND =4		
F6	ND =5		
F7	ND =6		
F8	Background		
F9	End of the test		
	<mark>്∭ ⊆</mark> ancel 🦉 <u>O</u> K		

Figure 11 FluoroTrack Tags Window

At any time the researcher can view all tags created since the program was started. This is done by clicking Tags>View from the main menu. The View Tags window opens and shows the tags created along with their creation time. Clicking on any tag line will cause the main screen display to be paused and then the display will jump to the time that the selected tag was created. Clicking on any of the headings will sort the Tags by that heading. See Figure 12 for the View Tags window.

Figure 12 FluoroTrack Tags Window

The 600A/950A graphical status bar located at the bottom of the Scope window provides a simple method of determining exactly what the 600A and 950A programs are doing at any time. Refer to Figure 13 which shows the 600A Signals display. The display is separated into two sections; the first is above the horizontal green line and the second below the line. Above the line you will notice red vertical lines and yellow sections. The red lines show the time at when a stimulation pulse (stim) was produced. The red lines are plotted with a width proportional to the stimulation pulse width. When the time base of the graph doesn't allow the width to be shown then the red lines will be one pixel wide which ensures that the stimulation signals can be seen even for the shortest pulses. The yellow areas show where the UV light source was turned on, i.e., shutter (shtr) open. Ratio and Calcium Fluorescence data is only collected while the shutter is open. Below the line the display can be either green or blue. Blue indicates when a protocol is running on the 600A (test) and green indicates when data collection is occurring (data).

Figure 13 600A Signals Display

1.6 Quick Start Example – Papillary muscle Force-frequency with calcium

This example will describe the steps required to perform force-frequency with calcium measurements in intact papillary muscle fibers. One example of a study similar to this is provided in

<u>Charged residue alterations in the inner-core domain and carboxy-terminus of α-tropomyosin differentially</u> affect mouse cardiac muscle contractility

Robert D Gaffin, Carl W Tong, David C Zawieja, Timothy E Hewett, Raisa Klevitsky, Jeffrey Robbins, Mariappan Muthuchamy, J Physiol. 2004 December 15; 561(Pt 3): 777–791.

The experiment involves mounting a right ventricular papillary muscle between a force transducer and length controller in a temperature controlled bath. The muscle is electrically stimulated and the resulting force and calcium transients are measured. The test is repeated at different stimulation frequencies to obtain the force-frequency relationship with calcium measurement.

1.6.1 Equipment Required

- 1. 1500A Small Intact Muscle Test System Consisting of:
 - 322C High Speed Length Controller
 - 400A Force Transducer
 - 600A Digital Controller
 - 701C High Current Field Stimulator
 - 801C Small Intact Muscle Apparatus
- 2. VSL/HVSL Sarcomere Length System
- 3. Fluorescence Photometry System Consisting of:
 - 950A FluoroTrack Software
 - 960A FluoroDAQ Data Acquisition Controller
 - 961A HyperSwitch Dual Excitation Light Source
 - 962A Cell Framing Adapter
 - 963A Photomultiplier Subsystem
 - 964-x Microscope Components x specifies microscope manufacturer
- 4. Inverted Microscope
- 5. Vibration Isolation Table
- 6. Misc. Lab Equipment glassware, pump, suction, tools, etc.

1.6.2 Method

For the purposes of this method we will assume that all of the instruments are set up correctly, all signal connections are made and the setup of 600A and VSL/HVSL has been done. Details of setup of 600A and VSL/HVSL can be found in their respective instruction manuals.

1.6.3 Experiment/Software Setup

- 1) It is strongly recommended that you power the instruments on in the following order:
 - Cairn Xenon Power Supply
 - 960A FluoroDAQ ensure the PMT switch on the front of the FluoroDAQ is OFF and then turn on the FluoroDAQ
 - 961A HyperSwitch
 - 600A PC
 - 322C High Speed Length Controller
 - 400A Force Transducer
 - 701C High Current Field Stimulator

- 825A TEC Controller
- 2) Log into the 600A PC.
- 3) Turn on the camera and then start the VSL/HVSL program. Ensure that the program is calibrated correctly for the objective that you will be using to image sarcomere length (normally a 40X objective is required for accurate SL measurement) also calibrate the low magnification setting of the program for either a 10X or 20X objective that is used for observing the tissue, measuring tissue dimensions, etc.).
- 4) Start the 600A program. Use Edit>Display Settings to choose the channels you would like to view on the 600A main window. You can also setup specific colours for each channel. We recommend that you view Force In, SL and Stim on the 600A main screen.
- 5) Open the 600A Scope screen and choose the channels to observe in real-time. We recommend that you view Force In. Scope provides a scrolling display of the selected data channels and is an excellent tool for observing the long term trends in data. For example it is very easy to use Scope to see force changes with time that are related to stimulation frequency or other control variables.
- 6) On the 600A menu bar click on the 950A heading which will open the FluoroTrack program. Click on Edit>Display Settings and choose the channels you would like to observe on the 950A main screen. Please be aware that you can view all of the 600A channels through 950A as well as the fluorescence channels and sarcomere length. Since 950A also includes many of the experiment control buttons you could choose to minimize the 600A main screen and just run the experiment using the 950A main screen. For now we will assume that both main screens from 600A and 950A will be on the Desktop and therefore we recommend that you view Force In, Numerator, Denominator, Ratio and SL on the main screen of 950A. You will note that you can automatically set the channel colours of the 950A display to be the same as 600A. This is recommended as you will then be able to easily recognize a channel on either main window simply by its colour.
- 7) Open the Manual Stimulation controls by clicking on Stimulus>Open. The control window will be as is shown in Figure 14.
- 8) Set the Frequency to 60 bpm (beats per minute) or to 1.0 Hz (the program automatically converts between the two units, so use the units of most convenience). Set the Pulse Width to 6.0 ms (or whatever you determine is best for your experimental setup).

Figure 14 Manual Stimulation Window

1.6.4 Tissue Setup

- Start superfusion through the 801C bath and then mount the papillary muscle in the 801C bath. The valve and the ventricular regions should be attached to the force transducer and the lever system. Refer to the 801C instruction manual for information about mounting methods.
- 2) With the tissue slack, record the zero level force (Record Fin) using the 600A Setup window. This sets the zero level for the force transducer. You can open the 600A Setup window either from 600A or from 950A. From 950A you would click 600A>Setup on the main menu.
- 3) Start stimulation pulses to pace the tissue by clicking on the Start button on the Manual Stimulation window.
- 4) Adjust the bundle length until you observe force twitches on the 600A Scope screen.
- 5) Optimize the bundle length and stimulation current or voltage (depending on the operating mode of the 701C Stimulator) to obtain maximum force twitches.
- 6) With the optimum length set use VSL/HVSL on Low Magnification to measure the tissue length and cross section dimensions. Record the reference length in the 600A Setup window and also press the Record Lin button to record the length datum.

1.6.5 Fluorescence Photometry Equipment Setup

- Observe the tissue using VSL/HVSL and set the microscope to a minimum of 40X objective in order to see the sarcomere pattern. In some cases sarcomeres will not be visible and if this is the case then no SL data can be collected. If sarcomeres are visible then use the MyoHandle on the Cell Framing Adapter (CFA) to rotate the camera so that the sarcomeres are vertical as shown on the VSL/HVSL screen.
- 2) Use the horizontal and vertical aperture adjustments on the CFA to set a region over which SL and Calcium measurements will be taken. You should ensure that the aperture is set so that there is only tissue within the aperture.
- 3) On the 950A menu bar open the Setup window (Figure 15). Use the Selected Mode drop down control to set the operating mode of the program the same as what you have set on the FluoroDAQ controller. In most cases you will use the Dual Excitation Interleaved (FURA) mode.
- 4) Turn off the room lights and then turn on the PMT (switch located on the front panel of the FluoroDAQ instrument see FluoroDAQ instruction manual).
- 5) Open the shutter by clicking on the Shutter Open button located on the main window of the FluoroTrack program.
- 6) You should now be observing Numerator, Denominator and Ratio signals on the main window of FluoroTrack. At this point FURA-2 has not been loaded into the tissue so the Numerator and Denominator signals should not change as the tissue contracts. If a change in Numerator and/or Denominator is seen during contractions then adjust the size and location of the aperture until these signals stay constant during a contraction. Any changes seen at this point will most likely be due to the tissue moving out of the aperture and causing a change in background.

VERSION	3.100
---------	-------

K 💿 ASI950A Setup				
Detected Mode: 2 - Dual Excitation Interleaved (Fura)				
Previous Mode 2 - Dual-E	Excitation Inter	leaved (Fura)		
Calculate [Ca2+] 💿 yes 🔿	no			
Kd - dissociation constant (r	Kd - dissociation constant (nM) 251.0			
Rmin - ratio at zero Ca2+ 0.329				
Rmax - ratio at saturated Ca2+ 0.839				
Beta - ratio of Den(0) / Den(Cs) 10.388				
Formula [Ca2+] = Kd * B	eta * (R - Rmin)	/ (Rmax - R)		
	Num (mv)	Den (mv)		
Record Background	3.5	3.5		
Record Zero [Ca2+]	196.5	596.5		
Record Saturated [Ca2+]	5196.5	6196.5		
Calculate Factors				
💥 <u>C</u> ancel 🗹 <u>A</u> pply				

Figure 15 Setup Window

- 7) If the Numerator or Denominator signal is too large you may need to change the Filter Flipper on the HyperSwitch to switch in a neutral density (ND) filter which will reduce the amount of light being seen by the PMT. You may want to record fluorescence data for each of the ND filter settings so that you can see the effect of the full range of the available filters. Note: Flipper position 1 corresponds to no ND filter and the filter increases with increasing Flipper number. Flipper position 6 corresponds to ND 1.3 which filters 95% of the light (5% transmission).
- 8) Once you have selected the appropriate ND filter then record the background fluorescence signal by clicking on Record Background on the main window. Note: background must be collected when there is no FURA loaded in the tissue.
- 9) Close the shutter by clicking Close on the FluoroTrack main window. This closes the HyperSwitch shutter and stops the calculation of Ratio.
- 10) Shut off the PMT. It is a best practice to only power on the PMT when you are taking measurements. Leaving it off at all other times will increase lifetime and prevent possible damage caused by bright light.

1.6.6 FURA-2 Loading

 Using the method described in the referenced paper load the tissue with FURA-2 dye. This procedure often takes 1 to 1.5 hours. Many researchers decrease the stimulation frequency during loading. This can be easily done by using the Frequency control on the Manual Stimulation window.

1.6.7 Controlling the Collection of Data

There are two methods of controlling the fluorescence photometry equipment and taking Calcium measurements. 1) manual method which can only be used if you do not need any of the 600A protocol control functions, 2) 600A control method which must be used if you want to use 600A protocol control functions or if you want to automate the experiment. 600A protocol control functions or if you want to automate the experiment. 600A protocol control functions allow the researcher to control the length, force or SL of the tissue during an experiment. They also include functions for controlling the stimulator, for changing baths on an 802D apparatus and for controlling the 950A and the VSL/HVSL programs. 600A protocol functions allow you to automate much of the experiment.

In this example experiment we want to collect Force, Numerator, Denominator and SL data at several different stimulation frequencies. The experiment will involve setting a desired stimulation frequency, waiting for the force to stabilize, collecting data from 40 twitches and then repeating these steps several times for each of the desired frequencies. The noisy nature of fluorescence signals can be greatly improved by collecting many twitches and averaging them to produce an average twitch with much lower noise. For this example we will collect data at 1, 1.5, 2, 2.5 and 3 Hz. We will not be controlling tissue length nor do we need to control the VSL/HVSL program. Therefore either of the two data collection methods could be used.

1.6.7.1 Manual Method of Collecting Data

The 950A automatically logs data to a file whenever the program is open. This file can hold a maximum of 4 hours of data and if the program is open for more than 4 hours a new data file will be automatically created every 4 hours. Alternatively the user can initiate a new data file at any time by clicking File>New Session on the FluoroTrack main menu. However, ratio data is only collected whenever the shutter is open. The manual method involves opening and closing the shutter whenever you want to collect data. Each Open/Close will generate a "record" in the data file. Records are the method used to separate different recordings. The manual method uses the following procedure.

- 1) Use the Manual Stimulation control and set the stimulation frequency to 1 Hz.
- 2) Monitor the Force In signal using the Scope function of 600A. Set the time base for Scope long enough that you can see 2 or more minutes on the screen at a time. Whenever you change the stimulation frequency you will typically see a change in the peak force. This change often occurs over a 1 to 2 minute time period. The procedure involves waiting for the peak force to stabilize and then going on to the next step.
- 3) Ensure the room lights are off and then switch on the PMT using the switch on the front panel of the FluoroDAQ controller.
- 4) Press the Open button on the 950A main window which will open the HyperSwitch shutter and start the collection of data.
- 5) Count the number of twitches and when you reach 40 press the Close shutter button on the 950A main window. Alternatively you can simply time how long the shutter is open, at 1 Hz you will require 40 seconds, at 1.5 Hz you will require 27 seconds, at 2 Hz 20 seconds and so forth.
- 6) Repeat steps (1) through (5) for each of the stimulation frequencies in your experiment. For this example you will repeat the steps at frequencies of 1.5, 2, 2.5 and 3 Hz.

- 7) When the experiment is complete set the stimulation frequency back to 1 Hz.
- 8) Proceed to section 3.6.8 for measuring the fluorescence background after the test.

1.6.7.2 600A Protocol Method of Collecting Data

- 1) During the FURA-2 loading you will have plenty of time to load the experimental protocols required during the experiment. These protocols are included in Appendix B at the end of this manual. You will also find the protocol files in the /pro directory on the 600A PC.
- 2) To use 600A to control the experiment and collect data you will require a series of protocols that set the different stimulation frequencies required and control the HyperSwitch and collect data. These protocols are put together in a sequence file which controls the execution of each individual protocol.
- 3) Click on Protocol>Open on the 600A main menu or on 600A>Protocol on the 950A main menu to open the 600A Protocol window.
- Click on the Sequencer Tab at the top of the 600A Protocol window and then click on Load and pick the sequence called: Force_Freq_950A.seq. The sequence is shown below as Figure 16.
- 5) Examination of the sequence file shows that it consists of a series of protocols that first set the stimulation parameters and then collect 40 twitches of data. At the end of the sequence the stimulation frequency is set back to 1 Hz. Manual timing is used after each of the stimulation setup protocols. Once the stimulation protocol executes the Next Test button found at the bottom of the 950A main window will un-grey. When the researcher wants to start data collection they simply have to press the Next Test button and the next protocol will execute. This allows the researcher to monitor peak force and choose when to start data collection. After each of the data collection protocols the sequence timing is automatic which means that the next stimulation frequency will be automatically set as soon as the current data collection finishes. The time can easily be changed to a fixed wait time between setting a new frequency and collecting the twitches if the researcher wanted to configure the test that way.

X 💿 6	00A Protocol					
Protoco	l Stimulus Sequencer					
s	Sequence File /home/asi/pro/Force_Freq_950A.seq					
Proto	col File Directory /home/	asi/pro/				
Dat	ta File Directory /home/	asi/data	/			
Se	quence Number	$\stackrel{\Delta}{\bigtriangledown}$	🐟 one	e data file	per test 🔷 💠 one data file	e per frame
Enable	Protocol File Name	Browse	Delay	Time (s)	Data File Name	File Status
1	start_stim1Hz.pro				ss1	ОК
2	Collect40Twitchesat1Hz.pro		0	∂ ⊏	1HzTwitches	ОК
3	stim1.5Hz.pro		0	[∲ □ -	ss1.5	ОК
4	Collect40Twitchesat1.5Hz.p		0	∂ ⊏	1.5HzTwitches	ок 🖌
5	stim2Hz.pro		0	⇒ □	ss2	ОК
6	Collect40Twitchesat2Hz.pro		0	∂ ⊏	2HzTwitches	ОК
7	stim2.5Hz.pro		0	⇒ □	ss2.5	ОК
8	Collect40Twitchesat2.5Hz.p		0	⇒ ⊏	2.5HzTwitches	ОК
9	stim3Hz.pro		0	⇒ 🗆 –	\$\$3	ОК
10	Collect40Twitchesat3Hz.pro		0	⇒ ⊏	3HzTwitches	ОК
11	pace1Hz.pro		0	⇒ □	pace	ОК
12			0	⇒ □		
13			0	⇒ □		
Clear Sequence Verify Sequence Load Save As Save						
The settings appear valid - the current sequence number is 1						

Figure 16 600A Sequencer Window

6) Each protocol listed in the sequence file is printed in Appendix B and is provided in the /pro directory on the 600A PC. A typical stimulation protocol is shown in Figure 17 and the Stimulation Parameters are shown in Figure 18. A new 600A control function has been created called Sync-Stimulus. This function must be the first function called by the protocol and it causes the start of the protocol to coincide exactly with the next stimulus pulse produced. Sync-Stimulus can be used with any protocol when stimulation is already occurring. The function will also synchronize a new stimulation pulses that are out of sync which can disturb the pacing of heart tissue. As can be seen in Figure 18, all of the stimulus profiles required by the experiment have been programmed; to change the stimulation frequency it is then a simple matter of calling a different Stimulus profile number.

🔀 💿 600	A Protocol					
Protocol	Stimulus	Sequencer				
Protocol	File pro/s	tim1.5Hz.pro		Lo 1.000 m	m Fmax	3.000 mN
Step	Time	Function		Paran	neters	
1	0.0	Sync-Stimulus	1			
2	0.0	Data-Enable				
3	40.0	Stimulus	2 10 ms			
4	100.0	Data-Disable				
Step	Time (m	s) Functi	on		Parameters	
1₹	0.0	👌 > Sync-Stim	iulus 1			
Insert	Append	Up Down	Delete L	min -1.000	🗦 Lmax	5.000
Sync-Sti	mulus Syr	chronize the protoc	ol with the rising o	r falling edge of	the stimulus pul:	se or train. 🛛 🔼
paramete	rs: edge-	flag (1:rising 0:fallin	g) [no units]			
example: Sync-Stimulus 1 (start the protocol on the leading edge of the next pulse or train) [Note - this function should only be used at the beginning of a protocol.]						
Sampl	ing Rate			Comment		
20000 ł	Hz 🗖	Stim at 1.5 Hz				
Star	i Test	View Sequenc	e Protocols	Load	Save As	Save
Protocol f	ile /home/a	si/pro/stim1.5Hz.pro	loaded			

Figure 17 600A Stimulation Protocol

🕺 💿 600A Proto	col				
Protocol Stimulu	is Sequencer				
Name	Pulse Width (ms)	Pulse Frequency (Hz)	Frequency Duration (ms)	Train Frequency (Hz)	Train Duration (\$)
Stimulus 1	6.0	10.000	50.0 →	1.000	7200.000
Stimulus 2	6.0 7	10.000	50.0 7	1.500 🔶	1800.000
Stimulus 3	6.0 7	10.000	50.0	2.000	1800.000
Stimulus 4	6.0 7	10.000	50.0	2.500 🔶	1800.000
Stimulus 5	6.0 7	10.000	50.0	3.000 🔶	1800.000
Stimulus 6	6.0 7	10.000	50.0	0.500	7200.000
Stimulus 7	6.0 7	10.000	50.0 7	0.200	7200.000
Stimulus 8	1.0 7	100.000	5.0 7	0.000 🔶	0.000 🔶
Stimulus 9	1.0 7	100.000	5.0 7	0.000 🔿	0.000 🔿
Stimulus 10	1.0 \$	100.000	5.0 \$	0.000 🔿	0.000
				ок	Cancel

Figure 18 600A Stimulus Window

- 7) The test protocol that collects the data and controls the 950A is shown in Figure 19. This protocol starts with a Sync-Stimulus command and contains a new function, FLA-Trigger, which controls the 950A fluorescence system. The FLA-Trigger command opens and closes the HyperSwitch shutter based on the parameters used in the command. The FLA-Trigger function uses two parameters, the first controls the shutter and the second sets a delay time. A 0 in the shutter parameter closes the shutter while a 1 opens the shutter. The delay time operates like other delays for 600A functions and allows the user to open/close the shutter at a time after the time when the function is issued. This allows synchronization of the shutter control with other functions such as length, force or SL controls.
- 8) Once the sequence has been loaded it is a simple matter to start the execution of the sequence by click the Start Sequence button on the 950A main window. Each of the protocols will execute with the start of all of the collection protocols requiring the user to click the Next Test button when they want to collect fluorescence data. Note: the FluoroDAQ does not control the PMT power so you must remember to turn on the PMT before starting the sequence. Since the total execution time of the sequence is only 10-15 minutes it is reasonable to leave the PMT on for the entire sequence. However, if desired, you could turn on the PMT prior to each click of the Next Test button and then turn it off as soon as you see the frequency change to the next value.
- 9) During execution of the sequence protocols data will automatically be collected and placed in the files that you specified on the Sequencer window. These are 600A data files which also contain all of the 600A data and SL. Note however that data will also have been collected by the 950A program and will be available in the log file for that session.
- 10) After the sequence completes proceed to section 3.6.8 for instructions on measuring the background after the test completes.

K 💿 60	0A Protocol				
Protocol	Stimulus	Sequencer			
Protocol	File pro/Co	ollect40Twitchesat1F	Hz.pro	Lo 1.000 mm	Fmax 3.000 mN
Step	Time	Function		Parameters	
1	0.0	Sync-Stimulus	1		
2	2.0	Data-Enable			
3	100.0	FLA-Trigger	1 O ms		
4	41000.0	FLA-Trigger	0 0 ms		
5	42000.0	Data-Disable			
6	0.0	Stop			
Sten	Time (ms)	Function	1	Param	ieters
$\boxed{3}$	100.0		r 1.0) me	
	100.0			, ms	
Insert	Append	Up Down	Delete	Lmin -1.000	Lmax 5.000 🔶
FLA-Tri	jger Start o	r stop data acquisiti	on by the FLA	Fluorescence Appliance	e).
paramet	ers: on-offis	witch (1:on 0:off) di	elav time (ms. s	1	
p			,	1	
example: FLA-Trigger 1 250 ms (turn acquisition on in 250 ms)					
Samp	ling Rate			Comment	
20000	Hz 🔟	Collect 40 twitche	s for Force, SL	and Fluorescence at 1	Hz.
Stai	t Test	View Sequence	Protocols	Load Sa	ave As Save
Test prote	ocol written to	file "/home/asi/pro/	Collect40Twitcl	hesat1Hz.pro"	

Figure 19 600A Twitch Data Collection Protocol

1.6.8 Measuring Fluorescence Background after the Test

- After the test is complete many researchers use a solution of manganese (Mn²⁺) to quench the FURA-2 present in the tissue. Turn on the PMT and then open the shutter to monitor the Numerator and Denominator signals during the quenching process. This allows you to determine the point at which the FURA-2 is completely quenched.
- 2) Once this level is reached the fluorescence background is measured by clicking on the Record Background button. Usually this final background is the one used during analysis instead of the background obtained before adding FURA-2.

1.6.9 Analysis

FluoroTrack includes powerful twitch analysis functionality. Each time the shutter is opened a "record" is created. Records are closed when the shutter is closed. All closed records can be viewed and analyzed either during or after the experiment. Use the following procedure to perform twitch analysis.

- 1) Click on Analysis>Open on the main 950A menu bar. This will open the Twitch Analysis window and display the View Records screen as is shown in Figure 20.
- 2) The Analysis window includes a top menu bar which provides the following headings (shown in bold) and the drop down items shown below.

File	Setup	View
Save Data	Open	Time Series – Single Record
Load Data	Close	Transients – Single Record
Close		Transients – All
		History

🕺 💿 Twitch	🗙 💿 Twitch Analysis											
<u>F</u> ile Setup View												
Recording History												
Record 🔻	Start Time	Duration	Twitches	Notes								
1	08:14:50	42.2	21	600A protocol								
2	08:16:07	0.5	0	manual background								
					View Time Series	View Transients						

Figure 20 Analysis - Recording History Window

- 3) Assuming that you have just complete the collection of data then all of the records associated with your experiment should be shown on the View Records screen. Click on the record of interest and then click on either the View Time Series or View Transients button located in the bottom right corner of the window.
- 4) The View Time Series graph, see Figure 21, will show the signals obtained versus time and this will be the same as you saw on the main 950A screen. You can zoom the data record by left clicking the mouse at a point of interest and then, while holding the button, drag out a box to enclose the data you are interested in viewing. The screen will automatically zoom to the region you have selected. When the data has been zoomed a scroll bar will appear below the graph which allows you to scroll through the data using the currently defined time base. Pressing the magnifying glass symbol will un-zoom the graph. Also note that Tags are shown on the Time Series at the time when they were created.

Figure 21 Analysis – View Time Series window

- 5) From either the Recording History window or from the Time Series window you can click on the View Transients button and a graph showing each transient (twitch) will be shown. In this case the x axis is twitch number as is shown in Figure 22. The View Transients display is where the analysis takes place and where the results of the analysis are shown. The window is split into two sections; the left side shows each twitch plotted against twitch number, the right side shows the average of the twitches that are shown on the left side of the window.
- 6) The relative size of the two sections can be changed by clicking and holding the left mouse button on the vertical bar between the two sections and then dragging the bar back and forth.
- 7) The twitch analysis process involves summing all of the displayed twitches and calculating an average twitch. This averaging process greatly reduces the noise on the signal. Noise reduces as you increase the number of twitches included in the average. Experience shows that an average of about 40 twitches provides a good result, however the particular circumstances of your experiment will determine the best number to use. It is important to understand that the average Ratio value is computed from the average Numerator and average Denominator values and not from averaging ratios calculated from each individual twitch. Any noise on the Denominator signal tends to create much larger noise levels on the Ratio signal, therefore it is important to calculate Ratio from a quiet signal and thus average Ratio = average Numerator / average Denominator.

Figure 22 Analysis - View Transients window

- 8) The Twitch Analysis Setup menu item opens the Setup window which is used to control the Twitch Analysis process. See Figure 23 for details of the Setup window.
- 9) The Setup window is separated into 6 sections: Trace Display, Twitch Length (%), Average Twitch Filters, Backgrnd, Average, and Select Parameters.
- 10) The Trace Display section provides controls to determine which data channels (signals) are displayed on both the View Time Series and View Transients windows. Controls are also provided to set the relative size of each data channel.
- 11) The Twitch Length (%) section provides controls that set the amount of data to be used for each twitch during the analysis. The pre-trigger value sets the amount of data before the stimulation pulse. This value is set as a percentage of the total time between stimulation pulses. The post-trigger value sets the amount of data after the stimulation pulse. This value is also set as a percentage of the total time between stimulation pulses. The baseline value controls how much of the data before the stimulation pulse should be used for calculating the baseline value for the twitch. This is also set as a percentage of the total time but is internally limited to a maximum equal to the pre-trigger percent.
- 12) The Average Twitch Filters section allows the user to filter the raw signals and the derivatives of these signals using a Savitsky-Golay smoothing filter. The order of the filter is set in the text boxes next to each channel label.
- 13) The Backgrnd section allows you to manually or automatically set the background for the Numerator and Denominator signals. If these values are known then you can simply type the baseline values in the N and D text boxes. When you click on Apply then all data is recalculated using these background values. An alternative method for setting the background is to choose a background record out of the available records. If, for example, you took background as your second record (as is shown in Figure 20) you can click the checkbox beside the Backgrnd label and then choose the appropriate record number using the spin button next to the Rec label. The N and D values for that record

will automatically be placed in the N and D text boxes and all data will be recalculated using these values.

- 14) The Average section allows the user to specify which channels are averaged and shown on the right side of the window. The four available channels are listed along with a dX/dt button and a Stats button. Selecting the dX/dt button will display the derivative of all of the selected channels. Selecting the Stats button will print the selected statistics to the right of each average graph (as is shown in Figure 22)
- 15) The final section is the Select Parameters section which allows the user to specify which statistics are to be calculated and displayed.

🕺 💿 Twitch Analysis Setup												
Trace Dis	splay	Twitch Length (%)										
channel	size	pr	e-trigger	-trigger		10						
🗌 Length	1	po	st-trigger	ĺ	50		*					
✓ Force	1 🔺	k	aseline		10		*					
🗹 Num	1 🔺	Average Twitch Filters										
🗹 Den	1 🔺	L	1 🖡	(dL/dt	2	*					
🖌 Ratio	1 🔺	F		(dF/dt	2	-					
🗌 SL	1 🛓	к SL		d	SL/dt	2	* * *					
Backgrnd 🗌 Rec 1 📩 N 0.0000 🛊 D 0.0000 🛊												
Average 🗌 Len		gth	✓ Force	e t	7	Ratio Stats						
Select Parameters 🥑 Apply 💥 Close												
🗹 baseline 🗌 max dX/dt 🛛 T 10% rise 🖓 T 90% fall												
🗹 peak 🗌 min dX/dt 🛛 T 50% rise 🖓 T 50% fall												
☑ peak ht □ T dX/dt max ☑ T 90% rise ☑ T 10% fall												
⊈] peak % [⊈] T dX/dt min [√] dT 10-90% [] dT 90-10%												
🖌 peak ht % 🖌 T peak												

Figure 23 Analysis - Setup window

16) Click on File>Export Data to export the analysis data to a file. The export function will export the data as is shown in the current display. If you are on View Time Series and you have zoomed in on a section of data and chosen, for example Force, Numerator, Denominator and Ratio then when you export the data you will get a data file with the time series including only these channels for the time period currently being shown. If, for example, you are on the View Transients window then when you export data you will get three files: the first which will be the twitches currently displayed for the channels selected, the second will be the average signals for the channels selected. You can import these exported files into Excel or most other programs. The data file format is ASCII delimited data and typical files are shown in Appendix A.

1.6.10 Program Shutdown

The 950A program should normally be closed using File>Quit and then the 600A and VSL/HVSL programs can be closed in the same manner.

In order to shut down the PC you must first log out and then tell Linux to shut down the PC. Never simply power down the PC since this can result in file corruption. To log out click on the K icon at the left end of the task bar at the bottom of the desktop (this is analogous to the Start button for Windows) and select Shutdown. A dialog box will appear where you can select Shut down. The PC will be powered off automatically when Linux finishes its shut down procedure.